Reductive biotransformation of nitroalkenes via nitroso-intermediates to oxazetes catalyzed by xenobiotic reductase A (XenA).
نویسندگان
چکیده
A novel reductive biotransformation pathway for β,β-disubstituted nitroalkenes catalyzed by flavoproteins from the Old Yellow Enzyme (OYE) family was elucidated. It was shown to proceed via enzymatic reduction of the nitro-moiety to furnish the corresponding nitroso-alkene, which underwent spontaneous (non-enzymatic) electrocyclization to form highly strained 1,2-oxazete derivatives. At elevated temperatures the latter lost HCN via a retro-[2 + 2]-cycloaddition to form the corresponding ketones. This pathway was particularly dominant using xenobiotic reductase A, while pentaerythritol tetranitrate-reductase predominantly catalyzed the biodegradation via the Nef-pathway.
منابع مشابه
Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study.
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NADH/NADPH-dependent reduction of various substrates, including 2-cyclohexenone and 8-hydroxycoumarin. XenA is a member of the old yellow enzyme (OYE) family of flavoproteins and is structurally and functionally similar to other bacterial members of this enzyme class. A characteristic feature of XenA is the presence of a cys...
متن کاملCharacterization of xenobiotic reductase A (XenA): study of active site residues, substrate spectrum and stability.
Xenobiotic reductase A (XenA) has broad catalytic activity and reduces various α,β-unsaturated and nitro compounds with moderate to excellent stereoselectivity. Single mutants C25G and C25V are able to reduce nitrobenzene, a non-active substrate for the wild type, to produce aniline. Total turnover is dominated by chemical rather than thermal instability.
متن کاملN-heterocyclic carbene organocatalytic reductive β,β-coupling reactions of nitroalkenes via radical intermediates.
An unprecedented N-heterocyclic carbene catalytic reductive β,β-carbon coupling of α,β-nitroalkenes, by using an organic substrate to mimic the one-electron oxidation role of the pyruvate ferredoxin oxidoreductase (PFOR) in living systems, has been developed. The reaction goes through a radical anion intermediate generated under a catalytic redox process. For the first time, the presence of rad...
متن کاملBiotransformation of hexahydro-1,3,5-trinitro-1,3,5-tiazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be efficiently mineralized with anaerobic domestic sludge, but the initial enzymatic processes involved in its transformation are unknown. To test the hypothesis that the initial reaction involves reduction of nitro group(s), we designed experiments to test the ability of a nitrate reductase (EC 1.6.6.2) to catalyze the initial reaction leading ...
متن کاملIdentification of nitroso compounds from biotransformation of 2,4-dinitrotoluene.
The intermediates of microbial transformation of 2,4-dinitrotoluene by a mixed bacterial culture derived from activated sludge were identified as 2-amino-4-nitrotoluene, 4-amino-2-nitrotoluene, 2-nitroso-4-nitrotoluene, and 4-nitroso-2-nitrotoluene. The biotransformation of 2,4-dinitrotoluene occurred only under anaerobic conditions with an exogenous carbon source. The two nitroso compounds wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Organic & biomolecular chemistry
دوره 9 9 شماره
صفحات -
تاریخ انتشار 2011